Topic :

ACTICE PROBLEMS

Straight Line

DPP No. 28

Total Marks : 38

Max. Time : 38 min.

Type of Questions		М.М.,	Min.
Single choice Objective ('–1' negative marking) Q.2, 3, 5, 6, 7, 9	(3 marks, 3 min.)	[18,	18]
Multiple choice objective ('–1' negative marking) Q.8	(5 marks, 4 min.)	[5,	4]
Subjective Questions ('–1' negative marking) Q.4,	(4 marks, 5 min.)	[4,	5]
Assertion and Reason (no negative marking) Q.1,	(3 marks, 3 min.)	[3,	3]
Match the Following (no negative marking) (2 × 4) Q.10	(8 marks, 8 min.)	[8,	8]

1. The line $L_1: y - x = 0$ and $L_2: 2x + y = 0$ intersect the line $L_3: y + 2 = 0$ at P and Q respectively. The bisector of the acute angle between L_1 and L_2 intersects L_3 at R.

Statement-1 : The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$

Statement-2: In any triangle, bisector of an angle divides the triangle into two similar triangles.

(A) Statement-1 is true, Statement-2 is true ; Statement-2 is correct explanation for Statement-1

- (B) Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true

If the straight lines joining the origin and the points of intersection of the curve 5x² + 12xy - 6y² + 4x - 2y + 3 = 0 and x + ky - 1 = 0 are equally inclined to the co-ordinate axes then the value of k :
(A) is equal to 1
(B) is equal to -1
(C) is equal to 2
(D) does not exist in the set of real numbers .

3. Consider points A(3, 4) and B(7, 13). If P be a point on the line y = x such that PA + PB is minimum, then coordinates of P are

(A) $\left(\frac{12}{7}, \frac{12}{7}\right)$ (B) $\left(\frac{13}{7}, \frac{13}{7}\right)$ (C) $\left(\frac{31}{7}, \frac{31}{7}\right)$ (D) (0, 0)

- **4.** Let the algebraic sum of the perpendicular distance from the points (2, 0), (0, 2) and (1, 1) to a variable straight line be zero, then the line passes through a fixed point whose coordinates are
- 5. The straight line x y 2 = 0 cuts the axis of x at A. It is rotated about A in such a manner that it is perpendicular to ax + by + c = 0. Its equation is :

(A) $bx - ay - 2b = 0$	(B) $ax - by - 2a = 0$
(C) $bx + ay - 2b = 0$	(D) $ax + by + 2a = 0$

- 6. Chords of the curve $4x^2 + y^2 x + 4y = 0$ which subtend a right angle at the origin pass through a fixed point whose co-ordinates are :
 - (A) $\left(\frac{1}{5}, -\frac{4}{5}\right)$ (B) $\left(-\frac{1}{5}, \frac{4}{5}\right)$ (C) $\left(\frac{1}{5}, \frac{4}{5}\right)$ (D) $\left(-\frac{1}{5}, -\frac{4}{5}\right)$

Get More Learning Materials Here :

🕀 www.studentbro.in

7.The interior angle bisector of angle A for the triangle ABC whose coordinates of the vertices
are A(-8, 5); B(-15, -19) and C(1, -7) has the equation ax + 2y + c = 0, then (a, c) =
(A) (10, 77)(B) (11, 78)(C) (12, 78)(D) (9, 67)

8. The graph of y = f(x) is symmetrical about the line x = 1, then

(A) f(-x) = f(x)	(B) $f(1 + x) = f(1 - x)$
(C) $f(x + 1) = f(x - 1)$	(D) $f(x) = f(2 - x)$

9. The straight line, ax + by = 1 makes with the curve $px^2 + 2axy + qy^2 = r$ a chord which subtends a right angle at the origin. Then :

(A) $r(a^2 + b^2) = p + q$	(B) $r(a^2 + p^2) = q + b$
(C) $r(b^2 + q^2) = p + a$	(D) none of these

10. Consider the general equation of second degree $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$. If this represents a pair of straight lines, match the two columns in the most accurate sense.

Match the column

Column – I		Column – II	
(A)	If (x_1, y_1) is the point of intersection of the two lines,	(p)	$\frac{c}{\sqrt{\left(a-b\right)^2+4h^2}}$
	then $(ax_1 + hy_1) (hx_1 + by_1) =$		
(B)	$af^2 + bg^2 + ch^2 =$	(q)	ab
(C)	The lines are parallel if $h^2 =$	(r)	gf
(D)	Product of perpendiculars from the origin	(s)	abc + 2fgh

Answers Key

- **1.** (C) **2.** (B) **3.** (C) **4.** (1, 1)
- 5. (A) 6. (A) 7. (B)
- 8. (B)(D) 9. (A)
- **10.** (A) \rightarrow (r), (B) \rightarrow (s), (C) \rightarrow (q), (D) \rightarrow (p)

Get More Learning Materials Here : 📕

